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Summary. The method for the contraction and expansion of graphs is used 
to treat the subspectrality of benzenoid hydrocarbons in relation to eigenval- 
ues 5-1. Counts of benzenoid hydrocarbons together with degeneracies of 
eigenvalues have been carried out for all species having h ~< 7 hexagons. In 
addition, twelve homologous series are evaluated, and the dosed results for 
the distribution of eigenvalues 5-1 and degeneracies in terms of the number 
of repeated units are tabulated. This method is universal and applicable to 
cases sharing other eigenvalues and to nonbenzenoid systems. 
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1. Introduction 

The phenomenon of different molecules sharing one or several eigenvalues in the 
H/ickel framework has intrigued chemists for many years. Most works concern 
the factorization of the characteristic polynomial (CP) by means of symmetry 
analysis [1-6], which yields incomplete information on the subspectrality of 
molecules [7, 11]. Others have used the Heilbronner procedure [1] to show why 
the eigenvalues of a fragment sometimes appear in the spectrum of the larger 
composite molecule [7-10]. In a series of papers, Hall [11] provided the basis for 
recognition of the eigenvalues + 1 and _ 2 for alternant hydrocarbons; his rule 
was translated into a descriptive form called embedding. Dias [12] commented 
on the method of embedding and pointed out that embedding seems to be a 
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sufficient but not a necessary requirement for the presence of a set of  eigenvalues. 
He developed the "selective lineation" method of identifying + 1 eigenvalues for 
dealing effectively with some perifused benzenoid hydrocarbons. Nevertheless, it 
is desirable to be able to find subspectral molecules in general and to enumerate 
all molecular graphs with the specified structural feature of one or more shared 
eigenvalues. 

In a previous paper [ 13], the graph-contracting method was used to generate 
and enumerate the concealed non-Kekulean benzenoid hydrocarbons. This 
method is also effective in discussing the subspectral problem in relation to 
eigenvalues ___ 1. In this paper, we give an account of  our treatment, illustrating 
the enumeration of all such species having seven and less hexagons in accordance 
with the degeneracy of eigenvalues __+ 1. Moreover, twelve homologous series of 
benzenoid hydrocarbons are evaluated and a set of  closed results for the 
distribution of  eigenvalues + 1 and degeneracies dependent on the number of  
repeated units are tabulated. This gives an insight into how a regularity in the 
density of states varies in finite and infinite systems without the assumed cyclic 
boundary condition. 

2. Mathematical background 

As is well known, the characteristic polynomial (CP) of graph G is defined as 
follows 

Pc(X)  = det Ixl - A I (1) 

where I is the identity matrix and x is a variable. The adjacency matrix A in Eq. 
(1) is typically sparse with entries in the ith row and j t h  column: 

{~ if vertices i and j are connected, 
a~ = otherwise. (2) 

Thus, when dealing with CPs, it would be convenient to use a weighted graph in 
which each vertex is subject to the weight x and the edge keeps the standard 
value 1. Usually, a loop is introduced to specify the vertex with weight not equal 
to 0. However, it seems too laborious to draw all loops in a big graph; therefore 
we omit them completely, but specifically symbolize those vertices and edges 
having weight other than x and 1 respectively. In the later discussions, we take 
x (or x = ___ 1) as the standard weight of vertex unless otherwise specified. 

The following theorem is of fundamental importance [14]. 

Theorem 1. Let the graph G be partitioned into two sub-graphs A and B by erasing 
edges. Then we have 

e~(x) = PB(x)P ~,(x) (3) 

where A" is a modified version of  A, obtained by adjusting the weight of  vertices and 
edges in A that were originally connected with B in the following manner. 

(1) I f  vertex i in A is the end of erased edges ij ( j  = 1, 2 . . . .  , t) and there 
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are r circuits (c = Cl, c 2 . . . . .  Cr) shared by vertex i and different paths 
(p  = cl - i, c2 - i, . . . , c r - i) in B, then the weight o f  vertex i should be adjusted 
to 

x ,F • l = a o P s _ j ( x )  + 2 ~ P n _ t ~ _ o ( x )  (4) 
L J = I  c = c  1 

where nc is equal to the product o f  edge weights along the circuit c. 

(2) I f  vertices i and k in A are ends o f  erased edges ij and k l  respectively and there 
are s paths (p  = Pl , P2 . . . . .  Ps) connecting vertices j and l in B, then the weight o f  
edge ik is equal to 

Ps 

b~ = a s  + ~, ~, aijaklT~pPB-p(x)/PB(x) (5) 
j ,  l p = p l  

where rrp represents the product o f  edge weights along the path p. 

In practice, it is easy to write down these modified weights because factors 
rrc, a~aktTrp are always equal to 1, and the summations in Eqs. (4) and (5) are 
limited to a few terms. For an illustration, consider the benzene graph parti- 
tioned according to the two different schemes shown in Fig. 1. In scheme 1, A'  
is ethene like with weight y and b for the identical vertices and edge, respectively, 
which are equal to 

y = x - ga(x)/g4(x), b = 1 + 1/g4(x ) (6) 

according to Eqs. (4) and (5). Similarly in scheme 2, A' is a single vertex with 
weight z calculated from Eq. (4): 

z = x - 2[g4(4) + 1]/gs(x). (7) 

On substituting them into Eq. (3), both lead to 

PoCx) = g6(x) -- g4(x) - -  2. (8) 

In Eqs. (6)-(8), g, (x)  represents the CP of a linear chain with n vertices, namely 
[n/2] 

g n ( x )  = 2 ( - -  1)r( n - -  r)t/r!(n - 2 r ) ! x  " - 2 r  (9)  
r = 0  

When x = 1 (or -1 ) ,  the situation becomes even simpler because Eq. (9) is 
reduced to 

g n ( 1 )  =(--1)m(t~n, 3ra "~- (~n, 3m+l)  (m = 0 ,  1 , 2 , . . . )  (10) 

where 6~,b is the Kronecker symbol; more specifically, g , ( 1 ) = 0 ,  if 
n = 2 , 5 , 8  . . . . .  g,(1) = 1, if n =0 ,  1,6,7 . . . .  and g,(1) = - 1  for 
n = 3, 4, 9, 1 0 , . . . .  Thus when x = 1, we have y = 0  and b - - 0  for benzene 
graph, implying that A'  is composed of two isolated vertices with zero weight 
and 

Pc ( l )  = g4(1)0 2 = 0 2. ( l l )  

Therefore, benzene contains eigenvalues +_ 1 with double degeneracies. This 
result is better exhibited in Fig. 2. 
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Fig. 1. Two schemes for partitioning the benzene graph. Symbols are those used in Eqs. (4) and (5) 

Fig. 2. Contraction of benzene graph for testing the existence of eigenvalue 1. The open circles signify 
vertices with zero weight 

3. Detection and construction of subspectral molecules 

The role played by Eq. (3) in determining the subspectrality of molecules is quite 
obvious. Because PB(x) appears in Eqs. (4) and (5) as a denominator, it can not 
be equal to zero; therefore the necessary and sufficient condition for x to be the 
eigenvalue of G, namely Pc (x) = 0 is 

P,,,(x) =0. (12) 

Thus, by selecting the fragment B appropriately, we can make A' so simple that 
Eq. (12) can be proved readily. In the case that the molecular graph G is rather 
complicated, the fragment B would be multi-component, namely a series of 
smaller fragments B~, B2 . . . .  , Bm are selected in order to make the modified 
graph A' as simple as possible. They satisfy 

PG (X) = PB1 ( x ) P B 2  (X)  �9 �9 �9 PBm (x)P A, (X)  ( 1 3 )  

and the subspectrality relationship between molecular graphs G and A" can then 
be determined from Eq. (12). On the other hand, a small graph with eigenvalue 
x is able to couple with a fragment or a set of fragments in the way fulfilling Eq. 
(13) such that a big molecular graph is generated, involving the same eigenvalue 
x. This means that the forward direction of Eq. (3) or Eq. (13) exhibiting the 
contraction of graph G is suitable for the detection of individual eigenvalues, and 
the opposite direction displaying the expansion of a graph with inherent eigen- 
value x can be used to construct subspectral molecules of various sizes. 

The situation looks more meaningful when A' coincides with A, namely 
A'  = A, because G then shares the eigenvalue x with its fragment A. In the case 
that x is not an eigenvalue of G, the condition A" = A implies the equivalence of 
G and A which can be arranged to give a composite species G[A]G" subspectral 
to G', where G[A]G' is produced by coalescing G and G' with the shared 
fragment A. We shall formulate this principle into corollaries later. Also, we limit 
attention to the plus eigenvalue + 1 with no loss of generality, since benzenoid 
hydrocarbons are alternant. 
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F i g .  3. Two modes of  
contraction for the naphthalene 
graph. Fragments B are 
enveloped by dotted lines, while 
A is marked with a heavy line 

We have shown why benzene contains double eigenvalues 1 as exhibited in 
Fig. 2 or Eq. (11). Now, we consider naphthalene. Two different modes of 
contraction are displayed for comparison as shown in Fig. 3. In the first 
contraction, we have B = 5,6-dimethylenecyclohexadiene with PB(1)= - 1  and 
A ' =  A = ethene with Pa(1) = 0; for the second contraction, PB(1)---g7(1) = 1 
and A' is bi-component, with a zero weight vertex and an ethene-like fragment 
with zero weight vertices. From Eq. (3), these two modes of contraction give 

Pc(I)  = ( - 1 ) 0 = 0 ,  Pc(I)  = 1 ( -1 )0  =0,  (14) 

respectively, implying that naphthalene is singly degenerate in eigenvalues + 1. 
The condition A ' =  A = ethene inspires one to coalesce naphthalene with 

other species G' by a shared edge (depicted by the heavy line in the first mode 
of Fig. 3) without changing the inherent eigenvalues of + 1 in G'. Thus 
anthrancene is found to have +__ 1 eigenvalues with double degeneracy similar to 
benzene, whereas napthacene and 1,2-benzanthracene (see Fig. 4) are singly 
degenerate in + 1 eigenvalues. By induction, the argument can be generalized to 
show that polyacenes of N hexagons (Fig. 4) share eigenvalues +1 with 
degeneracies 1 for even N and 2 for odd N. This result was discussed by Hall, 
based on an analysis of the symmetry of the eigenvectors [11]. 

Next we consider phenalenium, a perifused species with three hexagons, for 
which we perform the contraction indicated in Fig. 5. This gives PB(1) = 1 and 
PA,(1) = 0 3 SO that 

Pc( l )  = Ps(1)PA,(1) = (1)0 3 (15) 

for phenalenium. Hence phenalenium is triply degenerate in eigenvalues +_ 1. 
The reverse of the transformations shown in Figs. 2, 3 and 5 display the 

formation of benzene, naphthalene and phenalenium from appropriate smaller 
fragments A' and B respectively. They are also available for producing other 
species sharing + 1 eigenvalues with definite degeneracy. In Fig. 6, graph A~ can 
be contracted into benzene graph on the one hand, and extended to a perifused 
species G~ by coupling with a butadiene fragment (see Fig. 2) on the other. Thus, 
molecule G1 is known to have +_ 1 eigenvalues with double degeneracy similar to 
benzene. 

Fig. 4. 1,2-benzanthracene and 
polyacene graphs 
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Fig. 5. Contraction of phenalenium when x = 1. A is a bi-component, consisting of a vertex and an 
ethene fragment (denoted by the heavy line) 
Fig. 6. Generation of perifused graph G1; open circles in A~ represent vertices with zero weight 

The contraction of phenalenium inspires one to realise that A ~, a bi-compo- 
nent graph composed of A~ (Fig. 6) and a zero weight vertex, can be extended 
into two perifused species without changing the three inherent pairs of + 1 
eigenvalues (see Fig. 7). 

Phenalenium can also be partitioned as depicted in Fig. 8. In this case A', an 
acenaphthenylene like graph with two zero weight vertices, invariably has three 
pairs of +_ 1 eigenvalues in accord with Eq. (3). The perylene graph, which has 
an extra pair of eigenvalues + 1, may then be produced by analogy with the 
result for the second mode of contraction of naphthalene (see Fig. 3); this is 
shown in Fig. 9. 

The contraction presented in Fig. 9 can be used to find almost all benzenoid 
hydrocarbons sharing eigenvalues _+ 1. 

A~=A;+o 

7 

G2 

A' A~ G3 

a 9 
Fig. 7. Two perifused benzenoid hydrocarbons sharing eigenvalues + 1 with triple degeneracy. The 
heavy edge and vertex in G2 will be reduced to three open circles in A'  on carrying out the contraction 
displayed in Fig. 5 
Fig. 8. An equivalent version of phenalenium having three pairs of + 1 eigenvalues 
Fig. 9. Generation of the perylene graph; the allyl fragment in G3 will be reduced to open circles in 
A ~ on carrying out the second mode of contraction displayed in Fig. 3 
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4. Searching out subspectral species having h ~< 7 hexagons 

In order to construct subspectral benzenoids sharing ___ 1 eigenvalues conve- 
niently by means of Theorem 1, it is worthwhile formulating certain corollaries 
related to the condition that A'---A. 

Corollary 1. Let G be one of the acyclic fragments shown in Fig. 10 where the 
heavily marked vertex is elected as A. Then the weight of  vertex of A does not 
change if  its connecting fragment B is deleted. 

This is quite in accordance with Eq. (4). 

Corollary 2. The fragment B = 5,6-dimethylenecyclohexadiene can be deleted ter- 
minally from benzenoids without any influence on the occurrence of +_ 1 eigenvalues 
in the remaining part A. 

This has been illustrated in the first mode of contraction of naphthalene, where 
A is an ethene fragment (see Fig. 3). 

Additional results can be obtained by joining Corollary 2 with Corollary 1, 
namely deleting 5,6-dimethylenecyclohexadiene and allyl fragments in succession 
without modifying A. In Fig. 11, three kinds of molecular graphs are displayed 
in which heavy lines identify A, the equivalent fragment of G when x = 1. 

~ I -- I 

Fig. 10. Acyclic fragments B (enveloped with 
dotted line) can be deleted without changing 
the connected vertex, A 

Fig. 11. Equivalent fragments (heavy lines) of phenanthrene, Chrysene and triphenylene graphs 
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Fig. 12. Homologous series with a 
single pair of _ 1 eigenvalues 

Corollary 3. The fragment B =phenanthrene can be deleted from pyrene graph 
leaving A, the ethene fragment, unchanged. This can be verified analogously, using 
Eqs. (4) and(5). By induction, the polymer displayed in Fig. 12 can easily be shown 
to have a Single pair of  eigenvalues +_ 1 independent of  the length N. 

Corollary 4. Molecular graph G" having eigenvalues +_ 1 can be coalesced with 
another graph G by sharing the equivalent fragment A of  G such that the composite 
species G[A]G" shares eigenvalues +_ 1 with degeneracy identical to G'. 

This was suggested earlier and illustrated by polyacene in Fig. 4 as well as the 
polymer in Fig. 12. 

In order to obtain benzenoid hydrocarbons sharing eigenvalues + 1, elemen- 
tary subspectral species together with degeneracies are displayed in Fig. 13. They 
play a role in generating various composite species G[A]G" subspectral to G'. 

The benzenoid hydrocarbons of less than four hexagons that share eigen- 
values + 1 are benzene, naphthalene, anthrancene and phenallenium. We have 
also found four species with four hexagons sharing eigenvalues __+ 1; three of 
these have already been displayed in Figs. 4, 6 and 12. By means of Corollary 4, 
the final 4-hexagonal species, benzo[c]phenanthrene, is derived as the composite 
graph G[A]G" with a pair of eigenvalues __+ 1 shown in Fig. 14. 

2 1 1 1 1 1 

2 3 1 3 

3 2 2 1 

Fig. 13. Elementary graphs G' used for constructing subspectral benzenoid hydrocarbons by 
coalescence. Numbers below each graph show degeneracies of eigenvalues __+ 1 
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benzo[c]phenanthrene graph by 
G G' G [A ]G' coalescence 

Based on Corollaries 1-4 and the approach for constructing perifused 
subspectral species exemplified with perylene (see Fig. 9), we can find other 
species with more than four hexagons in all. In Figs. 15 and 16, 5-hexagonal and 
6-hexagonal species are displayed respectively. Counts of benzenoid hydrocar- 
bons together with degeneracies of eigenvalues +__ 1 are listed in Table 1 for all 
species having h ~< 7 hexagons. 

2 1 1 2 

1 1 3 1 

1 3 2 2 

4 1 

Fig. 15. 5-hexagonal benzenoid hydrocarbons sharing eigenvalues +__ 1; numbers represent degener- 
acy, and heavy lines represent the shared fragment A in each composite species G[A]G" 

Table 1. Counts and degeneracies of eigenvalues ___ 1 of  subspectral benzenoid hydrocarbons 

h 1 2 3 4 5 6 7 

d 2 1 3 2 2 1 4 3 2 1 3 2 1 4 3 2 1 
c 1 1 I 1 1 4 1 2 4 7 8 25 22 8 29 65 131 
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2 2 2 2 

2 2 2 2 1 

2 2 2 

2 1 2 3 

2 1 3 2 

Fig. 16. 6-Hexagonal benzenoid hydrocarbons sharing eigenvalues +__1; numerals and heavy lines 
have the same meaning as in Fig. 15 

5. Long chain polymers 

For long chain benzenoid hydrocarbons, it is important to know the relationship 
between the degeneracy of the eigenvalue and chain length N, the number of 
repeated units. We have already given the results for two polymers (see Figs. 
4, 12). Similarly, the investigation can readily be extended to many other 
polymers or homologous series, giving an insight into the density of states at 
x = + 1 dependent on the topology and chain lengths. We present results rather 
than detailed calculations in accordance with Theorem 1 for simplicity; these 
polymeric series are displayed in Fig. 17, and the corresponding degeneracies 
listed in Table 2. 

It is of interest to note that the number of states at x = _ 1 varies periodi- 
cally in species I, VII, VIII and IX but increases in proportion to chain length N 
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VI 

VII 

VIII 

IX 

Fig. 17. Nine series of polymeric benzenoid hydrocarbons 

X 

Fig. 18. Polymeric species having degeneracies of eigenvalues + 1 similar to VIII 

in other cases. The difference of terminal topology occurring among species 
II-VI influences the distribution of eigenvalues ___ 1 significantly for finite N but 
negligibly for infinite N. The periodic appearance of eigenvalues ___ 1 in a few 
polymers stimulates one to find additional subspectral series in which the 
periodicity of eigenvalues _ 1 still holds. For example, polymeric species X 
displayed in Fig. 18 have eigenvalues + 1 with periodicity identical to VIII. On 
the other hand, the degeneracy at x = ___ 1 increases in proportion to the chain 
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length N for species II, III,  IV, V and  VI, signifying the impor t an t  role of  the 
states a round  x = 1 when a one-dimensional  lattice is formed. 
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